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The microbial communities that inhabit our bodies have been increasingly linked to host physiology and pathophysiology. This 
microbiome, through its role in colonization resistance, influences the risk of infections after transplantation, including those caused 
by multidrug-resistant organisms. In addition, through both direct interactions with the host immune system and via the production 
of metabolites that impact local and systemic immunity, the microbiome plays an important role in the establishment of immune 
tolerance after transplantation, and conversely, in the development of graft-versus-host disease and graft rejection. This review offers 
a comprehensive overview of the evidence for the role of the microbiome in hematopoietic cell and solid organ transplant compli-
cations, drivers of microbiome shift during transplantation, and the potential of microbiome-based therapies to improve pediatric 
transplantation outcomes.
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INTRODUCTION

Our bodies are colonized by trillions of microorganisms that 
play vital roles in maintaining our health. These microbes mainly 
reside in the gastrointestinal tract (the “gut microbiome”), but 
they also colonize our aerodigestive tract, skin, and genito-
urinary tract [1–3]. At no point during the lifespan do these 
microbial communities change as dramatically as during early 
childhood. During birth, infants acquire an enormous number 
of microbes, mostly from their mother’s vaginal, fecal, or skin 
microbiota [4]. Over the ensuing days and months, the com-
position of these microbial communities undergoes substantial 
shifts due to changes in the local microenvironment and micro-
bial competition. For instance, the newborn gut is an aerobic 
environment comprised primarily of facultative aerobes such 
as Escherichia coli and Enterococcus species; however, this gut 
microbiome transitions to anaerobic bacteria (eg, Clostridium 
species) as oxygen levels decrease over the first several days 
of life [5, 6]. Thereafter, Bifidobacterium species predominate, 
particularly in exclusively breastfed infants. As solid foods are 
introduced, there is a shift toward Bacteroides, Clostridium, 
and Ruminococcus species such that, by 2–3 years of age, the 
gut microbiota resembles that of adults [6]. Notably, these shifts 
in microbiome composition during early childhood occur 

alongside maturation of the immune system and other crucial 
developmental processes.

Next-generation sequencing methods enable the identi-
fication of microbes in a culture-independent fashion, thus 
permitting description of the complete genomic content of 
microbiomes, and have the capacity to sequence many samples 
in parallel, overcoming a major limitation of prior methods. 
The development of these technologies vastly improved our 
ability to study microbial communities, with several concepts 
emerging that are important to understanding the impact of 
this microbiome on the outcomes of pediatric transplant recipi-
ents. First, commensal microbes that inhabit our bodies protect 
against potential pathogens. This concept, referred to as “col-
onization resistance,” occurs through a variety of mechanisms 
including competition for attachment sites, space, and nutri-
ents; production of antimicrobial substances; modulation of 
host immune responses; and destruction of competitor niches 
[7–11]. The ability of microbial communities to provide coloni-
zation resistance exists on a spectrum (Figure 1). Microbiomes 
with high diversity (more species) and that are resilient to ex-
ternal perturbations generally provide more effective coloniza-
tion resistance, while microbiomes of low diversity and stability 
offer less colonization resistance and tend to be associated with 
an increased risk of infection. Second, the microbiota has bi-
directional, dynamic, and context–dependent interactions 
with the host immune system. The microbiota interacts with T 
cells through antigen-specific receptors and various other im-
mune cell populations through Toll-like and Nod-like receptors 
[12–15], and these interactions serve to promote tolerance to 
commensal microbes and the mounting of effective immune re-
sponses to pathogens. Such microbiome–host crosstalk is par-
ticularly important for pediatric hematopoietic cell transplant 
(HCT) and solid organ transplant (SOT) recipients in whom 
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immune tolerance is vital for graft survival and the avoidance of 
graft-versus-host disease (GVHD) and graft rejection. Several 
factors contribute to disruptions of the microbiome among 
transplant recipients, including exposure to broad-spectrum 
antibiotics [16–18], dietary changes, chemotherapy-induced 
damage to the gut epithelium [19], and changes in the number 
and function of immune cells as a result of treatment with im-
munosuppressive medications (Figure 2).

ANTIBIOTIC RESISTANCE IN PEDIATRIC TRANSPLANT 
RECIPIENTS

Transplant recipients have a heightened risk of colonization and 
infection by multidrug-resistant organisms (MDROs) due to 
exposure to healthcare settings, compromised immunity, and 
frequent receipt of broad-spectrum antibiotics. Studies indi-
cate that over 50% of adult transplant recipients are colonized 
by MDROs with associated increased risks of infection and all-
cause mortality [20, 21]. While the prevalence of MDRO coloni-
zation may be lower in pediatric transplant recipients, the risk of 
progression to infection remains high [22–24] and is associated 
with substantial morbidity and mortality [25]. Recent research 
highlights the role of antibiotics as a risk factor for MDRO in-
fections among transplant recipients. For instance, antibiotic 
exposures preceded the onset of most mucosal barrier-injury 
bloodstream infections caused by MDROs in pediatric HCT 
recipients and were associated with an increase in the abun-
dance of the infection-causing strain in the gut microbiota [26]. 

Consequently, there is growing interest in strategies to eradi-
cate MDRO colonization prior to transplantation. Fecal micro-
biota transplantation (FMT) has shown promising results, with 
a meta-analysis suggesting approximately 70% efficacy [27], but 
experience in children being evaluated for transplantation is 
limited [28, 29].

Traditionally, studies of transplant recipients have utilized 
culture or PCR to identify colonization by specific MDROs or 
antibiotic resistance genes. However, metagenomic sequencing 
is increasingly being used to detect the complete set of resist-
ance genes, known as the “resistome.” These studies reveal 
that the gut resistome of HCT and SOT recipients is more di-
verse and abundant than that of healthy individuals [30, 31]. 
Moreover, the resistomes of transplant recipients are highly 
dynamic, with antibiotics playing a major role in shaping the 
resistome after transplantation. Notably, antibiotics promote 
the acquisition and expansion of resistance genes to that class 
of antibiotic and to other antibiotic classes [30, 31]. Recent re-
search in pediatric HCT recipients also suggests that different 
antibiotics have varying effects on the gut resistome, with anti-
biotics with an anaerobic spectrum of activity promoting the 
acquisition of new resistance genes and increasing the overall 
abundance of resistance genes within the gut microbiome [31]. 
An improved understanding of the impact of antibiotics and 
other interventions (eg, immunosuppressive medications, ra-
diation therapy) on the gut resistome could guide clinical man-
agement and antimicrobial stewardship efforts in pediatric 
transplant recipients.

Figure 1.  Host factors and exposures that influence microbiome colonization resistance and host infection susceptibility. Two microbial communities are 
shown representing opposite ends of the spectrum of microbiome diversity, stability, colonization resistance, and host susceptibility to infection. Compared 
with the microbiome shown at the bottom of the figure, the microbiome at the top of the figure has higher diversity in that it contains more species and these 
species have similar abundances; such a state is also generally associated with higher stability (more resiliency to external perturbations), the ability to more 
effectively resist colonization by potential pathogens, and lower susceptibility to infections.
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Figure 2.  Key drivers of microbiome injury and microbiome–host interactions that influence outcomes after transplantation. In health (shown on the left), 
diverse gut microbes and microbial metabolites maintain epithelial barrier integrity, resist pathogen expansion, and promote host immune recovery and tol-
erance. During transplantation (shown on the right), dietary changes, antibiotics, and immunosuppressive medications alter the microbiome, leading to the 
loss of putatively beneficial bacteria and the expansion of potential pathogens that produce harmful metabolites that promote inflammation and alter the 
intestinal microenvironment. These changes leave the host susceptible to bacterial translocation and initiate an inflammatory cascade that can result in 
adverse outcomes of transplantation such as GVHD and graft failure. GVHD, graft-versus-host disease; SCFA, short-chain fatty acid; TLR, Toll-like receptor.
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THE MICROBIOME IN HEMATOPOIETIC CELL 
TRANSPLANTATION

Over the past several decades, a growing body of literature has 
implicated the gut microbiome as a modifier of outcomes after 
HCT. Patients undergoing evaluation for HCT typically have gut 
microbiomes that differ from healthy individuals before trans-
plantation due to prior healthcare exposures [32–34]. Further 
changes in the gut microbiome occur during HCT including a 
reduction in microbial diversity, loss of putatively beneficial an-
aerobes from the bacterial orders Clostridiales and Bacteriodales, 
and increases in the abundances of Enterobacteriaceae (eg, E. 
coli, Klebsiella), Enterococcus, and Streptococcus [32, 35]. After 
HCT, recovery of the gut microbiome typically follows a pro-
tracted course; for instance, the diversity and composition of 
the gut microbiota differed from the pre-HCT microbiota for 3 
months after transplantation in a large adult cohort [36].

Mortality

The gut microbiome has also been shown to predict mortality 
after HCT. Studies of adult HCT recipients demonstrated that 
lower gut microbiome diversity at the time of neutrophil en-
graftment is associated with reduced overall survival and higher 
treatment-related mortality [32, 37]. Additionally, the composi-
tion of the gut microbiome has been associated with treatment-
related mortality in this patient population, with higher risk 
observed with higher relative abundances of potential patho-
gens (eg, Gammaproteobacteria [37], Enterococcus [34]), a lower 
abundance of Blautia [38] (a commensal genus of Clostridiales), 
and lower urinary concentrations of 3-indole sulfate, a trypto-
phan metabolite produced by colonic bacteria [39]. Notably, the 
generalizability of these findings to pediatric HCT recipients is 
unknown because of the small sample sizes of pediatric cohorts 
studied to date. An additional challenge to interpreting these 
results is distinguishing the extent to which these associations 
reflect microbiome features serving as biomarkers of disease 
processes rather than true causal relationships.

Infections

The gut microbiome has also been shown to be a useful pre-
dictor of the risk of certain infections after HCT. For instance, in 
adult HCT recipients, a single taxon representing greater than 
30% of the gut microbial population has been associated with 
an increased risk of bloodstream infection [35], with declining 
abundances of putatively beneficial bacteria frequently pre-
ceding bloodstream infection onset in this patient population 
[40]. The gut microbiome has also been linked to viral enteroco-
litis in pediatric HCT recipients [41], likely through alterations 
of gut epithelial architecture and nutrients [42]. Finally, the gut 
microbiome has been associated with the risk of infections at 
distant sites, including respiratory infections occurring after 
HCT in adults [43, 44], presumably through interactions with 
the host immune system.

GVHD

The gut microbiota is also linked to morbidity and mortality 
after HCT through its influence on T-cell alloreactivity and the 
development of GVHD. Lower diversity of the gut microbiome 
has been associated with an increased risk of acute GVHD 
in multiple adult [32, 45–48] and pediatric studies [17, 49]. 
Moreover, specific disruptions of gut microbiome composi-
tion have been associated with increased acute GVHD risk, 
including lower abundances of Clostridiales and Bacteroidales 
[49] and higher abundances of Enterobacteriaceae, 
Enterococcus [47], Prevotella, and Staphylococcus [41]. Short-
chain fatty acids and other microbial metabolites may also 
influence the development of both acute and chronic GVHD 
in HCT recipients (Table 1). For example, lower abundances 
of butyrate-producing bacteria [45], depletion of genes for 
butyrate metabolism [17], and lower fecal levels of propio-
nate and butyrate [49, 50] have all been associated with an in-
creased risk of acute GVHD. Notably, many of the associations 
with specific microbes or microbial metabolites have not been 
consistently demonstrated in cohorts at different centers or in 
studies of both children and adults, hindering the develop-
ment of reliable biomarkers or therapeutic targets for GVHD. 
Nonetheless, findings from these studies provide valuable in-
sights into potential mechanisms by which the gut microbiota 
contributes to GVHD pathogenesis, including through im-
mune activation by translocated bacteria [51], decreased pro-
duction of anti-inflammatory metabolites [52, 53], overgrowth 
of mucin-degrading bacteria [16], and impaired bile acid me-
tabolism [54].

Immune Recovery

Several recent studies suggest that the microbiome plays a role 
in immune reconstitution after HCT. In a small study of pedi-
atric HCT recipients, specific microbiome profiles were asso-
ciated with patterns of reconstitution of several immune cell 
populations, including inflammatory T, natural killer, and B 
cells [55]. Similarly, the abundances of specific bacterial genera 
within the gut microbiome were associated with the dynamics 
of neutrophil, lymphocyte, and monocyte recovery in adult 
HCT recipients [56]; in this same study, autologous FMT was 
shown to boost numbers of these immune cell populations 
during engraftment [56].

THE MICROBIOME IN SOLID ORGAN 
TRANSPLANTATION

Comparatively few studies have examined the microbiome 
in SOT recipients; however, the limited data available suggest 
that the microbiome may play a role in the development of 
infections after SOT. Specifically, among adult liver and renal 
transplant recipients, gut microbiome composition has been 
associated with the risks of respiratory viral infections [57], 
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Table 1.  Gut Microbial Metabolites That May Influence Outcomes of Transplantation

Metabolite
Proposed Mechanism of 
Action

Host 
Target Microbial Association

Pediatric Consid-
erations HCT Associations SOT Associations

Arginine Arginine and polyamine 
derivatives inhibit pro-
inflammatory (M1) mac-
rophage activation

Macro-
phages

Bifidobacterium, 
Ruminococcus, 
Streptococcus 
mutans

Increased arginine me-
tabolites in adult HCT 
recipients who did not 
develop GVHD [54]; 
higher arginine biosyn-
thesis gene abundance 
predicted lower risk of 
acute GVHD in pediatric 
HCT recipients [41]

Aryl hydrocarbon re-
ceptor ligands

Contextual, as T-cell lig-
ands can result in the 
induction of FOXP3+ 
regulatory T cells; 
antigen-presenting cell 
ligands can increase IL-22 
production

T and B 
cells, 
den-
dritic 
cells, 
macro-
phages, 
and mu-
cosal 
cells

Widespread produc-
tion

Diet influences 
ligand forma-
tion (eg, broc-
coli, parsley); 
potential for 
age-related 
variation

Metabolomic analysis 
of adult HCT recipi-
ents with acute GVHD 
showed decreased 
production of aryl hydro-
carbon receptor ligands 
[54]

Inosine (or degra-
dation products 
xanthine and hypo-
xanthine)

Interacts with adenosine 
α-2A receptor to stim-
ulate Th1 differentiation 
(when co-stimulation is 
present); may require 
reduced gut integrity to 
translocate systemically 
[104]

T cells Bifidobacterium 
pseudolongum; 
Akkermansia 
muciniphila; Lacto-
bacillus johnsonii

Inosine-
producing 
bacteria may 
vary across 
age groups 
(more preva-
lent in infants)

Theoretical role in 
acute rejection 
among SOT re-
cipients [65]

Phenylacetylglutamine Microbial phenylpyruvic 
acid production con-
verted by host to 
phenylacetylglutamine 
which signals via α-2A, 
α-2B, and β2 adrenergic 
receptors and increases 
platelet adhesion and 
thrombus formation

Platelets Widespread 
production by 
Bacteroides 
species and 
Clostridium 
asparagiforme

Diet plays a 
key role as is 
derived from 
phenylalanine-
rich foods; 
potential for 
age-related 
variation

Theoretical role in 
vasculopathy 
during chronic 
organ rejection 
or transplant-
associated 
thrombotic 
microangiopathy 
[65]

Secondary bile acids Promote regulatory T-cell in-
duction by direct binding 
to RORγT to block Th17 
differentiation, increasing 
mitochondrial reactive ox-
ygen species production, 
or binding to farnesoid 
X receptor in den-
dritic cells to decrease 
immunostimulation

T cells or 
den-
dritic 
cells

Clostridium; 
Parabacteroides; 
Bacteroides 
dorei; Alistipes; 
Lachnospiraceae; 
Hungatella 
hathewayi; 
Odoribacter 
laneus

Low levels of 
secondary bile 
acids were ob-
served during 
early infancy 
but stable 
high levels by 
3 years of age 
[105]

Metabolomic analysis 
of adult HCT recipi-
ents with acute GVHD 
showed alterations in 
bile acids [54]

Short-chain fatty acids Promote peripheral reg-
ulatory T-cell genera-
tion, suppress Th17 
generation, modulate 
macrophage function; 
butyrate may promote 
gut integrity

T cells, 
macro-
phages, 
intes-
tinal ep-
ithelial 
cells

Widespread produc-
tion

Children gen-
erally have 
higher abun-
dances of 
bacteria that 
produce short-
chain fatty 
acids in their 
microbiomes 
[41]

Mixed response: may pro-
tect against acute GVHD 
among adults [106], but 
also associated with 
risk of steroid-refractory 
acute GVHD [107]; 
linked to respiratory viral 
infections in adult HCT 
recipients [44] but not in 
pediatrics cohorts [41]

Loss of short-
chain fatty 
acid producers 
associated with 
mycophenolate-
induced enter-
opathy [108]

Sulfobactin B Interacts with transcrip-
tion factors (eg, NFκβ) 
and DNA polymerase 
inhibitor to decrease re-
sponse of macrophages 
to damage-associated 
molecular pattern 
(DAMP) signaling

Macro-
phages

Alistipes, 
Odoribacter, 
Chryseobacterium

Potential role in 
graft survival in 
murine models 
[64]

GVHD, graft-versus-host disease; HCT, hematopoietic cell transplantation; SOT, solid organ transplantation.
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MDRO colonization [21], and other infections [58] after trans-
plantation. Most studies on the microbiome in SOT recipients 
have focused on its potential role in organ rejection and graft 
function, while others have highlighted how immunosuppres-
sive medications can impact the microbiome and, in turn, how 
gut microbes can affect the metabolism of these medications.

Graft Rejection and Function

The risk and intensity of alloreactive immune responses fol-
lowing SOT is heavily influenced by the degree of genetic dis-
parity between the donor and recipient, but various other patient 
factors (eg, diet, infections) also influence the development of 
graft rejection. The gut microbiome can influence local immune 
responses at the site of the transplant or systemic responses at 
sites distant from the transplant. For instance, a higher risk of 
acute cellular rejection has been correlated with the abundances 
of specific bacterial populations in the gut microbiomes of pe-
diatric intestinal (eg, lower abundance of putatively beneficial 
Lactobacillales, higher abundance of Enterobacteriaceae) [59] 
and adult liver (eg, higher abundance of Enterobacteriaceae) 
[60] transplant recipients. Additionally, in adult renal transplant 
recipients, the urinary microbiome has been linked to sponta-
neous transplantation tolerance, which enables the withdrawal 
of immunosuppressive medications [61]. Animal models of 
liver, lung, and skin transplantation have further demonstrated 
the influential role of the gut microbiota in organ graft rejection 
[62–64].

As in HCT recipients, associations between the microbiome 
and alloreactive immune responses are mediated in part through 
the production of microbial metabolites (Table 1) [65]. For ex-
ample, sulfobacin B, a lipid compound produced by commensal 
bacteria from the genus Alistipes, has been associated with pro-
longed graft survival and reduced tumor necrosis factor produc-
tion by macrophages in a murine skin transplantation model 
[64]. Additionally, a high-fiber diet or dietary supplementation 
with acetate was associated with the prolongation of graft survival 
through induction of regulatory T-cell responses in a murine 
model of renal transplantation [66]. Other microbial metabolites, 
such as trimethyl-amine N-oxide and phenylacetylglutamine, 
have been proposed to play a role in vasculopathy, a common 
feature of chronic organ rejection [67, 68].

Both local and distant microbial populations influence 
graft survival and function after SOT. For instance, the lung 
microbiome before transplantation modifies the risk of 
bronchiolitis obliterans syndrome among adult lung trans-
plant recipients by affecting the microbes that colonize the 
transplanted organs [69]. Moreover, modulation of the gut 
microbiome through the administration of Bifidobacterium 
pseudolongum prolonged the duration of graft survival in mice 
undergoing cardiac transplantation [70], while administra-
tion of Bifidobacterium longum, Lactobacillus acidophilus, and 
Enterococcus faecalis was associated with reduced liver injury 

in a mouse model of liver transplantation [71]. Additionally, in 
adult renal transplant recipients, higher levels of the potentially 
beneficial Lachnospiraceae and Veillonellaceae after transplan-
tation were associated with improved graft function [72].

Immunosuppressive Medications

The medications routinely used to suppress immune responses 
and prevent organ rejection in SOT recipients may also impact 
the microbiome. For example, tacrolimus has been shown to 
result in alterations in gut microbiome composition when ad-
ministered to mice [73]. Conversely, microbial populations can 
metabolize immunosuppressive medications and thereby in-
fluence their effectiveness and toxicity. For instance, investiga-
tors recently observed that adults who had a high abundance of 
Faecalibacterium prausnitzii in their gut microbiome required 
higher doses of tacrolimus in the first month after renal trans-
plantation [74]. Subsequent screening of strains of F. prausnitzii 
and other bacterial species demonstrated that many Clostridiales 
metabolize tacrolimus to less active compounds, reducing en-
teral absorption and contributing to the variable tacrolimus ex-
posures observed with enteral dosing [75]. The microbiome has 
also been shown to modulate adverse effects associated with im-
munosuppressive medications. Gastrointestinal toxicity from 
mycophenolate mofetil was not observed in germ-free mice, 
suggesting that the development of this adverse effect requires 
an intact microbiota [76]. Additionally, in mice, the develop-
ment of sirolimus and tacrolimus-induced hyperglycemia can 
be prevented by administration of Lactobacillus plantarum [77] 
or the short-chain fatty acid butyrate [78].

INTERVENTIONS TO MODIFY THE MICROBIOME

In contrast to most other patient factors that influence trans-
plantation outcomes, the gut microbiome is amenable to mod-
ification. Thus, interventions that modify the microbiome have 
enormous promise to improve the outcomes of pediatric trans-
plantation. Use of such microbiome-based therapies in trans-
plant recipients has recently gained interest. Strategies currently 
being investigated include new therapies and modifications of 
supportive care practices that affect the microbiome (Figure 3).

Dietary Modification

The gut microbiome metabolizes dietary products that the 
host cannot, and diet alters the composition of microbial com-
munities, with the potential to influence clinical outcomes 
[79]. For example, enteral nutrition has been linked to higher 
microbiome diversity, improved survival, and lower risks of in-
fection and GVHD in pediatric HCT recipients [30, 80, 81]. In 
contrast, parenteral nutrition has been associated with negative 
effects on the gut microbiome, including loss of Blautia, altered 
production of short-chain fatty acids, and bacterial transloca-
tion [38, 82].
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Perioperative Antibiotics

Administration of antibiotics to SOT recipients alters the 
microbiome and may have beneficial or detrimental effects that 
vary based on the organ transplanted. Perioperative antibiotics 
have been associated with a reduction in the immune infiltrate 
responding to ischemia-reperfusion injury in adult liver trans-
plant recipients [83] and with improved graft outcomes in mice 
undergoing cardiac or skin transplantation [70, 84]. In contrast, 
perioperative antibiotics have been associated with worse out-
comes following transplantation of other organs, possibly due 
to effects on immunosuppressive drug metabolism or through 
infection risk [57, 65, 73].

Antibiotic Selection

Antibiotics are often prescribed for infection prophylaxis or 
treatment in transplant recipients with little consideration of 
the effects on potentially beneficial microbes. However, sev-
eral recent studies indicate that antibiotic selection can have a 

substantial impact on outcomes after HCT [85]. Early investi-
gation of antibiotics in this patient population evaluated their 
utility for GVHD prevention and involved administration of 
high doses of nonabsorbable oral antibiotics; although this ap-
proach was not consistently shown to prevent GVHD and was 
largely abandoned for this purpose, data from a recent pilot 
clinical trial suggest that it may reduce the risk of bloodstream 
infection after HCT [86]. More recent efforts to mitigate the 
risks of GVHD and infection after HCT have largely focused 
on the selection of antibiotics to minimize off-target effects on 
putatively beneficial microbes. In particular, studies of adult 
and pediatric HCT recipients have consistently reported asso-
ciations between exposure to antibiotics with anaerobic spectra 
of activity and both gut microbiome alterations (eg, lower mi-
crobial diversity [39], loss of Bacteroidetes [16] or Clostridiales 
[17, 18]) and an increased risk of acute GVHD of the gut or 
liver [16, 28]. Experiments conducted in mice suggest that 
these associations may be causal; for instance, mice treated with 

Figure 3.  Microbiome-based interventions in development or under investigation for use in transplant recipients. Strategies that seek to directly alter the 
microbiome include prebiotics (nonviable substances that promote the growth of beneficial microbes), probiotics (live microorganisms that confer a potential 
health benefit), bacteriophages that enable targeted elimination of harmful bacteria, transfer of entire gut microbial communities through fecal microbiota 
transplantation, and administration of microbial consortia containing multiple live bacterial strains. Other strategies such as dietary modifications and se-
lection of specific antibiotics for prophylaxis or treatment indirectly modify the microbiome with the potential to influence transplantation outcomes. Created 
with Biorender.com.
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imipenem–cilastatin or piperacillin–tazobactam had higher 
GVHD mortality after allogeneic HCT than mice treated with 
aztreonam [16, 18]. An ongoing clinical trial that is random-
izing adult allogeneic HCT recipients with febrile neutropenia 
to receipt of cefepime or piperacillin–tazobactam will evaluate 
for such a causal relationship in humans (ClinicalTrials.gov: 
NCT03078010). In an analogous manner, preservation of cer-
tain gut bacteria was associated with protection from chronic 
rejection in a mouse model of lung transplantation [63], sug-
gesting that judicious use of antibiotics could also promote im-
mune tolerance in SOT recipients.

Prebiotics

Prebiotics are nonviable substances that promote the growth of 
beneficial microorganisms. Several of these agents, including 
human milk oligosaccharides [87], fructo-oligosacchrides [88], 
and a combination of glutamine, fiber, and oligosaccharides [89] 
have been evaluated in transplant recipients. These products have 
generally been shown to be safe and to have modest effects on gut 
microbiome composition and markers of inflammation, though 
with limited data for clinical benefits [87–89]. Importantly, the 
benefits of prebiotics in transplant recipients may be limited by 
the substantial heterogeneity of the gut microbiome in these pa-
tient populations and the detrimental effects of antibiotics on the 
beneficial microbes targeted by these products.

Probiotics

Probiotics are live microbes that when consumed confer po-
tential health benefits to the host. Products differ by species, 
dose, and preparation, all of which influence the ability of 
these microbes to colonize or impact the resident gut micro-
biota. Despite promising preclinical experiments in mice [90], 
Bifidobacterium and Lactobacillus-based probiotics have lacked 
clinical efficacy in small studies of SOT [91] and HCT [92] re-
cipients. For instance, a recent study evaluating L. plantarum 
for the prevention of acute GVHD in pediatric HCT recipients 
closed prematurely because the interim analysis did not sup-
port efficacy (ClinicalTrials.gov: NCT03057054). Other related 
interventions, including synbiotics (mixtures of prebiotics and 
probiotics) and postbiotics (microbe-derived metabolites), have 
thus far not been studied in transplant populations.

FMT

FMT has proven effective for treating Clostridiodes difficile in-
fection in immunocompetent patients [93] and, although its 
efficacy is somewhat lower in SOT recipients [94], it was ef-
fective in small trials involving HCT recipients [95, 96]. FMT 
is also being investigated for the eradication of gut coloniza-
tion by MDROs prior to transplantation [29] and the preven-
tion or treatment of acute gut or liver GVHD, with favorable 
responses reported in a growing number of cases of steroid-
refractory GVHD [97–99]. Serious infections resulting from 

FMT have been reported [100] and further research is needed 
to optimize processes for donor selection and sample proc-
essing to ensure safe use of this therapy in pediatric trans-
plant recipients.

FUTURE DIRECTIONS

Microbiome diversity and composition differ among children 
and adults. During childhood, there are rapid shifts in micro-
bial community structure that coincide with the maturation 
of the immune system. Therefore, findings from studies of the 
microbiome in adult transplant recipients may not be general-
izable to pediatric populations. In addition, the indications for 
transplantation, diet, immune cell populations, and risks of in-
fections and noninfectious complications of transplantation 
differ among children and adults. Despite recent advances in our 
understanding of the microbiome’s importance to the outcomes 
of transplantation, there are several major gaps in our knowl-
edge. Most studies have focused only on bacteria, leaving fungi, 
viruses, and archaea largely unexplored. There is increasing 
interest in studying these microbial populations in transplant 
recipients, with the few studies conducted to date suggesting po-
tential roles in the pathogenesis of GVHD [101, 102] and solid 
organ graft dysfunction [103]. Additionally, further research is 
needed both to identify the causal pathways underlying associ-
ations between the microbiome and transplantation outcomes 
and to expeditiously translate therapies likely to benefit trans-
plant recipients. As our understanding of the microbiome im-
proves and new tools to modify the microbiome emerge, there is 
the potential for the development of individualized microbiome-
targeted therapies that prevent infections and other complica-
tions among pediatric transplant recipients.
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